Sleipnir
|
SVDer performs singular value decomposition of the matrix of expression values in a given PCL file (which should contain no missing values; see KNNImputer). The PCL file can then be transformed in SVD space using a number of algorithms, e.g. up- or down-weighting low-variance singular values or continuously transforming the weights of each value.
SVDer -i <input.pcl> -o <output.pcl> -r <fraction>
Decompose the input matrix input.pcl
, retain only the minimum number of singular values necessary to account for fraction
of the total variance, set the rest to zero, and reproject the resulting matrix in output.pcl
.
SVDer -i <input.pcl> -o <output.pcl> -b
Decompose the input matrix input.pcl
, set all singular values to the mean (thus preserving the total variance), and reproject the resulting matrix in output.pcl
.
SVDer -i <input.pcl> -o <output.pcl> -t <parameter>
Decompose the input matrix input.pcl
, transform the singular values proportionally to the parameter
power, and reproject the resulting matrix in output.pcl
.
package "SVDer"
version "1.0"
purpose "Transforms PCL data through Support Vector Decomposition"
section "Main"
option "input" i "Input PCL file"
string typestr="filename"
option "output" o "Output PCL file"
string typestr="filename"
option "umatrix" u "Output U matrix PCL file"
string typestr="filename"
section "SVD"
option "reprojection" r "Fraction of variance to reproject"
double default="1"
option "transform" t "Transformation function parameter"
double default="1"
option "signal_balance" b "Equally weight all SVs"
flag off
section "Optional"
option "skip" s "Columns to skip in input PCL"
int default="2"
option "verbosity" v "Message verbosity"
int default="5"
Flag | Default | Type | Description |
---|---|---|---|
-i | stdin | PCL file | Input PCL file to be transformed; must not contain any missing values. |
-o | stdout | PCL file | Output PCL file containing the transformed version of -i . |
-u | None | PCL file | If given, output PCL file containing the U matrix (basis vectors) of the decomposition of -i . |
-r | 1 | Double (fraction) | Fraction of variance to be reprojected; when less than 1, proportionally many singular values are set to zero before reprojecting the output matrix. |
-t | 1 | Double | Power by which singular values are transformed before reprojection. For singular values {s1, ..., sn} S = sum(si), ti = (si/S)^-t , and T = sum(ti), each si is replaced by ti/sum(ti). |
-b | Off | Flag | If given, set all singular values to their average value before reprojection; otherwise, transform them according to -t . |
-s | 2 | Integer | Number of columns to skip between the initial ID column and the first experimental (data) column in the input PCL. |